
 

I. MONOMIALITY PRINCIPLE 

 
Abstract— The concepts and the related aspects of the 

monomiality principle are presented in this paper to explore different 
approaches for some classes of orthogonal polynomials. The 
associated operational calculus introduced by the monomiality 
principle allows us to reformulate the theory of Hermite, Laguerre 
and Legendre polynomials from a unified point of view. They are 
indeed shown to be particular cases of more general polynomials, 
whose usefulness in purely mathematical and applied context is 
discussed. The powerful tool represented by the Hermite and 
Laguerre polynomials allows us to derive classes of isospectral 
problems in applied mathematics and economics. 
 

Keywords— Orthogonal Polynomials, Hermite, Laguerre, 
Legendre, monomiality principle, generating functions.  

ANY properties of conventional and generalized 
orthogonal polynomials have been shown to be 

derivable, in a straightforward way, within an operational 
framework, which is a consequence of the monomiality 
principle [1]. The concepts of quasi-monomiality are often 
exploited to derive classes of isospectral problems. By quasi-
monomial we mean any expression characterized by an integer 
n, satisfying the relations: 
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where 
^

M  and 
^
P  play the role of multiplicative and 

derivative operators. An example of quasi-monomial is 
provided by: 
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whose associated multiplication and derivative operators, 

read: 
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It is worth noting that, when 0δ = , then: 
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and: 
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More in general, a given polynomial ( )np x , n ∈ , x ∈  

can be considered a quasi-monomial if two operators 
^

M  and 
^
P , called multiplicative and derivatives operator respectively, 
can be defined in such a way that: 
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with: 
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 (7) 

 

that is 
^

M , 
^
P  and 

^
1  satisfy a Weyl group [2] structure with 

respect commutation operation. The “rules” we have just 
established can be exploited to completely characterize the 
family of polynomials ( )np x , we note indeed that: 

If 
^

M  and 
^
P  have a differential realization, the polynomial 

( )np x  satisfy the differential equation: 
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If  0 ( ) 1p x = , then ( )np x  can be explicitly constructed as: 
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If  0 ( ) 1p x = , then the generating function of ( )np x  can 

always be cast in the form: 
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II. HERMITE AND LAGUERRE POLYNOMIALS 
The Hermite [3,4] and Laguerre [1] polynomials are two 

examples of quasi-monomial. It is therefore possible to show 
that their properties can be derived by using the monomiality 
principle. To make the discussion more complete we will 
consider a more general case, by analyzing the two-variable 
extension of Hermite polynomials, defined by: 

 
22

0
( , ) !

!( 2 )!

n r n r

n
r

y xH x y n
r n r

  − 

=

=
−∑  (11) 

 
and linked to the ordinary case, by: 
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Moreover, it is evident that: 
 
( ,0) n

nH x x= . (13) 
 
The polynomials ( , )nH x y  have been shown as to be quasi-

monomial under the action of the operators: 
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and then, according with the previous statements, we obtain: 

 
 Differential equation 
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 Generating function 
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From the above relations, a fairly straightforward 

conclusion is the proof that the generalized Hermite 
polynomials of two variables satisfies the heat equation: 
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The proof is just a consequence of the structure of the 

generating function itself. By keeping, indeed the derivatives 
of both sides of (16) with respect to t and then equating the t-
like powers, we find: 
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for which the heat equation follows. This statement allows a 
further important result, indeed by regarding it as an ordinary 
first order equation in the variable y and by treating the 
differential operators as an ordinary number, we can write the 
polynomials ( , )nH x y  in terms of the following operational 
definition: 
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In the same way it is possible to prove that the generalized 

Laguerre polynomials can be treated as quasi-monomial by 
using the operators: 
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where 
1^

xD
−

 denotes the inverse of the derivative operator [5-
7]. Being essentially an integral operator, it will be specified 
by the operational rule: 
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According to the previous prescriptions, the generalized 

Laguerre polynomials are defined by the series: 
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by the differential equation: 
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and by the generating function: 
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By expanding the exponential containing the negative 

derivative operator, we find: 
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Regarding the series on the r.h.s. of the previous relation, 

we note that it can be recognized in terms of known functions, 
as: 
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where 0 ( )J x  is the 0th order cylindrical Bessel function, so 
that: 
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Regarding the identification of the function on r.h.s. of the 

(25), we note that, the functions: 
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specified by the generating function: 
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are known as Tricomi functions. 

III. LEGENDRE POLYNOMIALS 
The monomiality Principle provides the possibility of 

deriving most of the properties of many polynomials of 
conventional or generalized nature. So far we have not stated a 
general procedure to find the quasi-monomiality operators for 
any polynomials, but we can use, however, an intuitive 
approach to develop to apply the method to different families 
of polynomials. 

In the previous section we have seen that the generalized 
Hermite polynomials ( , )nH x y  are quasi-monomial as well as 
the two-variable generalized Laguerre polynomials ( , )nL x y  
under the action, respectively, of the operator stated in (14) 
and (21), which can be combined to form:  
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The above operators satisfy the Weyl [2] group structure 

and they therefore good candidates as monomiality operators. 
By exploiting the rule written in equation (9) of the first 
section, we can construct the polynomials associated with the 
above operators, just starting from the multiplication operator, 
namely: 
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As expected, the polynomials on r.h.s. of previous equation, 

which we will denote by [1]: 
 
2 ( , )nL x y , 
 

exhibit a structure in between Laguerre and Hermite 
polynomials, and for the operational point of view, they can 
also be written as: 
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By defining the operators: 
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we find, from the Weyl decoupling rule: 
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The above relation has the following important 

consequence: the polynomials 2 ( , )nL x y  satisfies the 
differential equation: 
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which implies that these polynomials can be derived from 

the operational relation: 
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These polynomials provides also a generalization of the 

ordinary Legendre polynomials, we find, indeed: 
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and the properties of the Legendre polynomials can be 
therefore studied by using the formalism and the concepts of 
the monomiality principle; that is the Legendre polynomials 
can be treated as quasi-monomial. 

IV. GENERALIZED LEGENDRE POLYNOMIALS  
In the section III we have presented the Legendre 

polynomials by a different point of view, that is by combining 
the results of the monomiality principle stated in the cases of 
the Hermite and Laguerre polynomials. This procedure can be 
also extended by using different manipulations on the 
operators which we use to recognize the families of 
polynomials as quasi-monomials.  

We can finally expose a different example to explore a 
further family of Legendre-like polynomials. Let, in fact, the 
following monomiality operators: 
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according to the so far developed formalism the associated 
polynomials will be explicit given by: 
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A fairly natural consequence of the above relations is that 

the polynomials ( , )nR x y  can be expressed as a discrete 
binomial convolution of Laguerre polynomials. We note 
indeed that (see eq. (40)): 
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The generating function satisfied by this polynomials can be 

evaluated by using the same tools shown in the previous 
sections, thus getting: 
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According to the structure of the monomiality operators and 

of this last identity, it is straightforward to prove that the 
polynomials ( , )nR x y  satisfies the following partial 
differential equation: 
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and, by noting that: 
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yields the operational definition: 
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This last family of polynomials too can be reduced to 

ordinary polynomials; by noting indeed that the Legendre 
polynomials ( )nP x  can be alternatively expressed in the form: 
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we obtain that ( , )nR x y  reduces to ( )nP x  when: 
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This last result is interesting by itself and because it allows 

to conclude that the Legendre polynomials can be viewed as a 
binomial convolution of Laguerre polynomials. 

In the previous section we have written the generating 
function of the generalized two-variable Laguerre polynomials 
of the type: 

 
2 ( , )nL x y  

 
by using the zero order Tricomi function (see eq. (28)), we can 
also derive a further generating function as: 
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Since the Legendre polynomials ( )nP x  are linked to the 

above polynomials by the relation stated in equation (38), we 
can immediately write the related generating function: 
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The relation in the equation (47), linking the Legendre 

polynomials with the polynomials ( , )nR x y , can be recasting 
in the form: 
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and can be used to derive the generating functions of the 

polynomials ( , )nR x y . By using the relation in the equation 
(49), we find, in fact: 
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Otherwise, according to equation (50), we can immediately 

write: 
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This class of polynomials can be using to state many 

different relations involving generalizations of Legendre and 
Laguerre polynomials, useful to provide a powerful tools to 
simplified many aspects of computation, with application in 
statistics [8], probability theory, electromagnetics [9-12], 

industrial engineering and economics [13-17]. 

V. BASED-BESSEL FUNCTIONS  
The considerations presented in the previous sections, 

confirm that the most of the properties of families of 
polynomials, recognized as quasi-monomial, can be deduced, 
quite straightforwardly, by using operational rules associated 
with the relevant multiplication and derivative operators. 
Furthermore, they suggest that we can introduce or “define” 
families of isospectral problems [18-22] by exploiting the 
correspondence: 
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We can therefore use the polynomials ( )np x  as a basis to 

introduce “new” functions with eigenvalues corresponding to 
the ordinary case. The most useful example is provided by a p-
based Bessel function, defined as: 
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which is easily shown to satisfy the equation: 
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which provides an isospectral problem to the ordinary Bessel 
equation. 

Since the generating function of the ordinary cylinder Bessel 
function is: 
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we can cast the relevant to p-based Bessel function as: 
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So that, we can introduce different p-based Bessel function, 

by using the polynomials presented in the previous sections, 
since we have proved that they satisfied the rules of the 
monomiality principle. In fact, in the case of Hermite-based 
Bessel function, we can immediately obtain: 
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which is a trivial consequence of the structure of the 
multiplicative operator related to the Hermite polynomials and 
of the Weyl decoupling rule. This last identity can be exploited 
to derive the series expansion definition: 
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and the link with the two-variable Bessel function is given by: 
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An important result, stressing the relevance of the Hermite-

Bessel functions in applications, is the related Jacobi-Anger 
expansion, which is obtained by performing the substitution: 
 

it e θ→ , (0, 2 )θ π∈  
 

in the equation (57), we have: 
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which can be further exploited to derive the integral 
representation: 
 

2(sin )
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1( , ) cos( sin )y
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π
θ θ θ θ

π
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These functions have considerable application in the theory 

of the emission of electromagnetic radiation by charged 
particles moving in magnetic fields. In a future paper we will 
investigate other possible generalization of the p-based Bessel 
functions. 
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